Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
PLoS One ; 19(4): e0297847, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635533

RESUMO

The uterine muscular layer, or myometrium, undergoes profound changes in global gene expression during its progression from a quiescent state during pregnancy to a contractile state at the onset of labor. In this study, we investigate the role of SOX family transcription factors in myometrial cells and provide evidence for the role of SOX4 in regulating labor-associated genes. We show that Sox4 has elevated expression in the murine myometrium during a term laboring process and in two mouse models of preterm labor. Additionally, SOX4 differentially affects labor-associated gene promoter activity in cooperation with activator protein 1 (AP-1) dimers. SOX4 exerted no effect on the Gja1 promoter; a JUND-specific activation effect at the Fos promoter; a positive activation effect on the Mmp11 promoter with the AP-1 dimers; and surprisingly, we noted that the reporter expression of the Ptgs2 promoter in the presence of JUND and FOSL2 was repressed by the addition of SOX4. Our data indicate SOX4 may play a diverse role in regulating gene expression in the laboring myometrium in cooperation with AP-1 factors. This study enhances our current understanding of the regulatory network that governs the transcriptional changes associated with the onset of labor and highlights a new molecular player that may contribute to the labor transcriptional program.


Assuntos
Trabalho de Parto , Miométrio , Animais , Feminino , Camundongos , Gravidez , Trabalho de Parto/genética , Trabalho de Parto/metabolismo , Miométrio/metabolismo , Regiões Promotoras Genéticas , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Útero/metabolismo
2.
Nat Commun ; 15(1): 945, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296945

RESUMO

Age-associated myometrial dysfunction can prompt complications during pregnancy and labor, which is one of the factors contributing to the 7.8-fold increase in maternal mortality in women over 40. Using single-cell/single-nucleus RNA sequencing and spatial transcriptomics, we have constructed a cellular atlas of the aging myometrium from 186,120 cells across twenty perimenopausal and postmenopausal women. We identify 23 myometrial cell subpopulations, including contractile and venous capillary cells as well as immune-modulated fibroblasts. Myometrial aging leads to fewer contractile capillary cells, a reduced level of ion channel expression in smooth muscle cells, and impaired gene expression in endothelial, smooth muscle, fibroblast, perivascular, and immune cells. We observe altered myometrial cell-to-cell communication as an aging hallmark, which associated with the loss of 25 signaling pathways, including those related to angiogenesis, tissue repair, contractility, immunity, and nervous system regulation. These insights may contribute to a better understanding of the complications faced by older individuals during pregnancy and labor.


Assuntos
Trabalho de Parto , Miométrio , Gravidez , Humanos , Feminino , Miométrio/metabolismo , Trabalho de Parto/genética , Trabalho de Parto/metabolismo , Músculo Liso , Envelhecimento/genética , Contração Muscular
3.
Mol Hum Reprod ; 29(10)2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37774003

RESUMO

Myometrial contraction is one of the key events involved in parturition. Increasing evidence suggests the importance of the extracellular matrix (ECM) in this process, in addition to the functional role of myometrial smooth muscle cells, and our previous study identified an upregulated tissue inhibitor of metalloproteinase 1 (TIMP1) in human laboring myometrium compared to nonlabor samples. This study aimed to further explore the potential role of TIMP1 in myometrial contraction. First, we confirmed increased myometrial TIMP1 levels in labor and during labor with cervical dilation using transcriptomic and proteomic analyses, followed by real-time PCR, western blotting, and immunohistochemistry. Then, a cell contraction assay was performed to verify the decreased contractility after TIMP1 knockdown in vitro. To further understand the underlying mechanism, we used RNA-sequencing analysis to reveal the upregulated genes after TIMP1 knockdown; these genes were enriched in collagen fibril organization, cell adhesion, and ECM organization. Subsequently, a human matrix metalloproteinase (MMP) array and collagen staining were performed to determine the TIMPs, MMPs and collagens in laboring and nonlabor myometrium. A real-time cell adhesion assay was used to detect cell adhesive capacity. The results showed upregulated MMP8 and MMP9, downregulated collagens, and attenuated cell adhesive capacity in laboring myometrium, while lower MMP levels and higher collagen levels and cell adhesive capacity were observed in nonlabor. Moreover, TIMP1 knockdown led to restoration of cell adhesive capacity. Together, these results indicate that upregulated TIMP1 during labor facilitates and coordinates myometrial contraction by decreasing collagen and cell adhesive capacity, which may provide effective strategies for the regulation of myometrial contraction.


Assuntos
Trabalho de Parto , Contração Uterina , Gravidez , Feminino , Humanos , Contração Uterina/genética , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor Tecidual de Metaloproteinase-1/farmacologia , Proteômica , Trabalho de Parto/genética , Miométrio/metabolismo , Colágeno/genética , Colágeno/metabolismo
4.
Cell Rep ; 42(1): 111846, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36599348

RESUMO

Preterm birth, the leading cause of perinatal morbidity and mortality worldwide, frequently results from the syndrome of preterm labor. The best-established causal link to preterm labor is intra-amniotic infection, which involves premature activation of the parturition cascade in the reproductive tissues. Herein, we utilize single-cell RNA sequencing (scRNA-seq) to generate a single-cell atlas of the murine uterus, decidua, and cervix in a model of infection-induced preterm labor. We show that preterm labor affects the transcriptomic profiles of specific immune and non-immune cell subsets. Shared and tissue-specific gene expression signatures are identified among affected cells. Determination of intercellular communications implicates specific cell types in preterm labor-associated signaling pathways across tissues. In silico comparison of murine and human uterine cell-cell interactions reveals conserved signaling pathways implicated in labor. Thus, our scRNA-seq data provide insights into the preterm labor-driven cellular landscape and communications in reproductive tissues.


Assuntos
Trabalho de Parto , Trabalho de Parto Prematuro , Nascimento Prematuro , Gravidez , Feminino , Recém-Nascido , Camundongos , Animais , Humanos , Trabalho de Parto Prematuro/genética , Parto , Trabalho de Parto/genética , Útero
5.
Reprod Sci ; 30(2): 544-559, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35732928

RESUMO

The alterations in myometrial biology during labor are not well understood. The myometrium is the contractile portion of the uterus and contributes to labor, a process that may be regulated by the steroid hormone progesterone. Thus, human myometrial tissues from term pregnant in-active-labor (TIL) and term pregnant not-in-labor (TNIL) subjects were used for genome-wide analyses to elucidate potential future preventive or therapeutic targets involved in the regulation of labor. Using myometrial tissues directly subjected to RNA sequencing (RNA-seq), progesterone receptor (PGR) chromatin immunoprecipitation sequencing (ChIP-seq), and histone modification ChIP-seq, we profiled genome-wide changes associated with gene expression in myometrial smooth muscle tissue in vivo. In TIL myometrium, PGR predominantly occupied promoter regions, including the classical progesterone response element, whereas it bound mainly to intergenic regions in TNIL myometrial tissue. Differential binding analysis uncovered over 1700 differential PGR-bound sites between TIL and TNIL, with 1361 sites gained and 428 lost in labor. Functional analysis identified multiple pathways involved in cAMP-mediated signaling enriched in labor. A three-way integration of the data for ChIP-seq, RNA-seq, and active histone marks uncovered the following genes associated with PGR binding, transcriptional activation, and altered mRNA levels: ATP11A, CBX7, and TNS1. In vitro studies showed that ATP11A, CBX7, and TNS1 are progesterone responsive. We speculate that these genes may contribute to the contractile phenotype of the myometrium during various stages of labor. In conclusion, we provide novel labor-associated genome-wide events and PGR-target genes that can serve as targets for future mechanistic studies.


Assuntos
Trabalho de Parto , Progesterona , Gravidez , Feminino , Humanos , Progesterona/metabolismo , Miométrio/metabolismo , Estudo de Associação Genômica Ampla , Trabalho de Parto/genética , Trabalho de Parto/metabolismo , Ligação Proteica , Complexo Repressor Polycomb 1/metabolismo
6.
Am J Obstet Gynecol ; 228(3): 330.e1-330.e18, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36002050

RESUMO

BACKGROUND: The onset of preterm labor is associated with inflammation. Previous studies suggested that this is distinct from the inflammation observed during term labor. Our previous work on 44 genes differentially expressed in myometria in term labor demonstrated a different pattern of gene expression from that observed in preterm laboring and nonlaboring myometria. We found increased expression of inflammatory genes in preterm labor associated with chorioamnionitis, but in the absence of chorioamnionitis observed no difference in gene expression in preterm myometria regardless of laboring status, suggesting that preterm labor is associated with different myometrial genes or signals originating from outside the myometrium. Given that a small subset of genes were assessed, this study aimed to use RNA sequencing and bioinformatics to assess the myometrial transcriptome during preterm labor in the presence and absence of chorioamnionitis. OBJECTIVE: This study aimed to comprehensively determine protein-coding transcriptomic differences between preterm nonlaboring and preterm laboring myometria with and without chorioamnionitis. STUDY DESIGN: Myometria were collected at cesarean delivery from preterm patients not in labor (n=16) and preterm patients in labor with chorioamnionitis (n=8) or without chorioamnionitis (n=6). Extracted RNA from myometrial tissue was prepared and sequenced using Illumina NovaSeq. Gene expression was quantified by mapping the sequence reads to the human reference genome (hg38). Differential gene expression analysis, gene set enrichment analysis, and weighted gene coexpression network analysis were used to comprehensively interrogate transcriptomic differences and their associated biology. RESULTS: Differential gene expression analysis comparing preterm patients in labor with chorioamnionitis with preterm patients not in labor identified 931 differentially expressed genes, whereas comparing preterm patients in labor without chorioamnionitis with preterm patients not in labor identified no statistically significant gene expression changes. In contrast, gene set enrichment analysis and weighted gene coexpression network analysis demonstrated that preterm labor with and without chorioamnionitis was associated with enrichment of pathways involved in activation of the innate immune system and inflammation, and activation of G protein-coupled receptors. Key genes identified included chemotactic CYP4F3, CXCL8, DOCK2, and IRF1 in preterm labor with chorioamnionitis and CYP4F3, FCAR, CHUK, and IL13RA2 in preterm labor without chorioamnionitis. There was marked overlap in the pathways enriched in both preterm labor subtypes. CONCLUSION: Differential gene expression analysis demonstrated that myometria from preterm patients in labor without chorioamnionitis and preterm patients not in labor were transcriptionally similar, whereas the presence of chorioamnionitis was associated with marked gene changes. In contrast, comprehensive bioinformatic analysis indicated that preterm labor with or without chorioamnionitis was associated with innate immune activation. All causes of preterm labor were associated with activation of the innate immune system, but this was more marked in the presence of chorioamnionitis. These data suggest that anti-inflammatory therapy may be relevant in managing preterm labor of all etiologies.


Assuntos
Corioamnionite , Trabalho de Parto , Trabalho de Parto Prematuro , Gravidez , Feminino , Recém-Nascido , Humanos , Miométrio/metabolismo , Corioamnionite/genética , Corioamnionite/metabolismo , Transcriptoma , Trabalho de Parto Prematuro/genética , Trabalho de Parto Prematuro/metabolismo , Trabalho de Parto/genética , Trabalho de Parto/metabolismo , Inflamação/genética , Inflamação/metabolismo , Perfilação da Expressão Gênica
7.
JCI Insight ; 7(5)2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260533

RESUMO

Parturition is a well-orchestrated process characterized by increased uterine contractility, cervical ripening, and activation of the chorioamniotic membranes; yet, the transition from a quiescent to a contractile myometrium heralds the onset of labor. However, the cellular underpinnings of human parturition in the uterine tissues are still poorly understood. Herein, we performed a comprehensive study of the human myometrium during spontaneous term labor using single-cell RNA sequencing (scRNA-Seq). First, we established a single-cell atlas of the human myometrium and unraveled the cell type-specific transcriptomic activity modulated during labor. Major cell types included distinct subsets of smooth muscle cells, monocytes/macrophages, stromal cells, and endothelial cells, all of which communicated and participated in immune (e.g., inflammation) and nonimmune (e.g., contraction) processes associated with labor. Furthermore, integrating scRNA-Seq and microarray data with deconvolution of bulk gene expression highlighted the contribution of smooth muscle cells to labor-associated contractility and inflammatory processes. Last, myometrium-derived single-cell signatures can be quantified in the maternal whole-blood transcriptome throughout pregnancy and are enriched in women in labor, providing a potential means of noninvasively monitoring pregnancy and its complications. Together, our findings provide insights into the contributions of specific myometrial cell types to the biological processes that take place during term parturition.


Assuntos
Trabalho de Parto , Miométrio , Células Endoteliais , Feminino , Humanos , Trabalho de Parto/genética , Trabalho de Parto/metabolismo , Miométrio/metabolismo , Parto/genética , Parto/metabolismo , Gravidez , Transcriptoma
8.
Int J Mol Sci ; 23(3)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35163786

RESUMO

Labor is a process of inflammation and hormonal changes involving both fetal and maternal compartments. MicroRNA-132-3p (miR-132-3p) has been reported to be involved in the development of inflammation-related diseases. However, little is known about its potential role in labor onset. This study aimed to explore the mechanism of miR-132-3p in amnion for labor initiation. In the mouse amnion membranes, the expression of miR-132-3p was found to increase gradually during late gestation. In human amniotic epithelial cell line (WISH), upregulation of miR-132-3p was found to increase proinflammatory cytokines and cyclooxygenase 2 (COX2) as well as prostaglandin E2 (PGE2), which was suppressed by miR-132-3p inhibitor. Dual-specificity phosphatase 9 (DUSP9) was identified as a novel target gene of miR-132-3p, which could be negatively regulated by miR-132-3p. DUSP9 was present in the mouse amnion epithelial cells, with a decrease in its abundance at 18.5 days post coitum (dpc) relative to 15.5 dpc. Silencing DUSP9 was found to facilitate the expression of proinflammatory cytokines and COX2 as well as PGE2 secretion in WISH cells, which could be attenuated by p38 inhibitor SB203580 or JNK inhibitor SP600125. Additionally, intraperitoneal injection of pregnant mice with miR-132-3p agomir not only caused preterm birth, but also promoted the abundance of COX2 as well as phosphorylated JNK and p38 levels, and decreased DUSP9 level in mouse amnion membranes. Collectively, miR-132-3p might participate in inflammation and PGE2 release via targeting DUSP9-dependent p38 and JNK signaling pathways to cause preterm birth.


Assuntos
Âmnio/imunologia , Fosfatases de Especificidade Dupla/genética , Inflamação/genética , Trabalho de Parto/genética , MicroRNAs/genética , Âmnio/citologia , Âmnio/metabolismo , Animais , Antracenos/farmacologia , Ciclo-Oxigenase 2/metabolismo , Células Epiteliais/citologia , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Feminino , Imidazóis/farmacologia , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Gravidez , Piridinas/farmacologia
9.
PLoS One ; 16(11): e0260119, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34797869

RESUMO

High throughput sequencing has previously identified differentially expressed genes (DEGs) and enriched signalling networks in human myometrium for term (≥37 weeks) gestation labour, when defined as a singular state of activity at comparison to the non-labouring state. However, transcriptome changes that occur during transition from early to established labour (defined as ≤3 and >3 cm cervical dilatation, respectively) and potentially altered by fetal membrane rupture (ROM), when adapting from onset to completion of childbirth, remained to be defined. In the present study, we assessed whether differences for these two clinically observable factors of labour are associated with different myometrial transcriptome profiles. Analysis of our tissue ('bulk') RNA-seq data (NCBI Gene Expression Omnibus: GSE80172) with classification of labour into four groups, each compared to the same non-labour group, identified more DEGs for early than established labour; ROM was the strongest up-regulator of DEGs. We propose that lower DEGs frequency for early labour and/or ROM negative myometrium was attributed to bulk RNA-seq limitations associated with tissue heterogeneity, as well as the possibility that processes other than gene transcription are of more importance at labour onset. Integrative analysis with future data from additional samples, which have at least equivalent refined clinical classification for labour status, and alternative omics approaches will help to explain what truly contributes to transcriptomic changes that are critical for labour onset. Lastly, we identified five DEGs common to all labour groupings; two of which (AREG and PER3) were validated by qPCR and not differentially expressed in placenta and choriodecidua.


Assuntos
Ruptura Prematura de Membranas Fetais/genética , Primeira Fase do Trabalho de Parto/fisiologia , Miométrio/metabolismo , Adulto , Sequência de Bases/genética , Parto Obstétrico/classificação , Feminino , Ruptura Prematura de Membranas Fetais/fisiopatologia , Expressão Gênica/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Início do Trabalho de Parto , Trabalho de Parto/genética , Trabalho de Parto/fisiologia , Parto , Placenta , Gravidez , RNA-Seq , Análise de Sequência de RNA/métodos , Transcriptoma/genética , Sequenciamento do Exoma
10.
Front Immunol ; 12: 722816, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34671346

RESUMO

During labor, a variety of coordinated physiological and biochemical events cause the myometrium to transition from a quiescent to contractile state; the molecular mechanisms responsible for this transition, however, remain unclear. To better understand this transition at a molecular level, the global transcriptome and proteome of human myometrial samples in labor and those not in labor were investigated through RNA sequencing (RNA-seq) and quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) via data-independent acquisition (DIA) and parallel reaction monitoring (PRM) methods. Furthermore, an integrated proteotranscriptomic analysis was performed to explore biological processes and pathway alterations during labor; this analysis identified 1,626 differentially expressed mRNAs (1,101 upregulated, 525 downregulated) and 135 differentially expressed proteins (97 upregulated, 38 downregulated) in myometrium between nonlabor and in labor groups. The comprehensive results of these analyses showed that the upregulated mRNAs and proteins increased inflammation under hypoxia stress in the myometrium under labor, and related proteins and cytokines were validated by PRM and Luminex assays. Our study confirmed the biological process of inflammation and hypoxia in laboring myometrium at the transcriptome and proteome levels and provided recourse to discover new molecular and biological changes during labor.


Assuntos
Hipóxia/metabolismo , Trabalho de Parto/metabolismo , Miométrio/metabolismo , Parto/metabolismo , RNA Mensageiro/metabolismo , Transcriptoma , Adulto , Cromatografia Líquida , Citocinas/metabolismo , Feminino , Redes Reguladoras de Genes , Humanos , Inflamação/metabolismo , Trabalho de Parto/genética , Parto/genética , Gravidez , RNA Mensageiro/genética , Espectrometria de Massas em Tandem
11.
JCI Insight ; 6(11)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33945511

RESUMO

Clinical phenotyping of term and preterm labor is imprecise, and disagreement persists on categorization relative to underlying pathobiology, which remains poorly understood. We performed RNA sequencing (RNA-seq) of 31 specimens of human uterine myometrium from 10 term and 21 preterm cesarean deliveries with rich clinical context information. A molecular signature of 4814 transcripts stratified myometrial samples into quiescent (Q) and nonquiescent (NQ) phenotypes, independent of gestational age and incision site. Similar stratifications were achieved using expressed genes in Ca2+ signaling and TGF-ß pathways. For maximal parsimony, we evaluated the expression of just 2 Ca2+ transporter genes, ATP2B4 (encoding PMCA4) and ATP2A2 (coding for SERCA2), and we found that their ratio reliably distinguished NQ and Q specimens in the current study, and also in 2 publicly available RNA-seq data sets (GSE50599 and GSE80172), with an overall AUC of 0.94. Cross-validation of the ATP2B4/ATP2A2 ratio by quantitative PCR in an expanded cohort (by 11 additional specimens) achieved complete separation (AUC of 1.00) of NQ versus Q specimens. While providing additional insight into the associations between clinical features of term and preterm labor and myometrial gene expression, our study also offers a practical algorithm for unbiased classification of myometrial biopsies by their overall contractile program.


Assuntos
Trabalho de Parto/genética , Miométrio/metabolismo , Contração Uterina/genética , Adulto , Cesárea , Feminino , Ruptura Prematura de Membranas Fetais/genética , Ruptura Prematura de Membranas Fetais/metabolismo , Perfilação da Expressão Gênica , Idade Gestacional , Humanos , Primeira Fase do Trabalho de Parto , Trabalho de Parto/metabolismo , Trabalho de Parto Prematuro/genética , Trabalho de Parto Prematuro/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Gravidez , Nascimento Prematuro , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Nascimento a Termo , Transcriptoma , Contração Uterina/metabolismo , Adulto Jovem
12.
Biochem Soc Trans ; 49(2): 997-1011, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33860781

RESUMO

Cyclic adenosine monophosphate (cAMP) contributes to maintenance of a quiescent (relaxed) state in the myometrium (i.e. uterine smooth muscle) during pregnancy, which most commonly has been attributed to activation of protein kinase A (PKA). PKA-mediated phosphorylation of cytosolic contractile apparatus components in myometrial smooth muscle cells (mSMCs) are known to promote relaxation. Additionally, PKA also regulates nuclear transcription factor (TF) activity to control expression of genes important to the labour process; these are mostly involved in actin-myosin interactions, cell-to-cell connectivity and inflammation, all of which influence mSMC transition from a quiescent to a contractile (pro-labour) phenotype. This review focuses on the evidence that cAMP modulates the activity of TFs linked to pro-labour gene expression, predominantly cAMP response element (CRE) binding TFs, nuclear factor κB (NF-κB), activator protein 1 (AP-1) family and progesterone receptors (PRs). This review also considers the more recently described exchange protein directly activated by cAMP (EPAC) that may oppose the pro-quiescent effects of PKA, as well as explores findings from other cell types that have the potential to be of novel relevance to cAMP action on TF function in the myometrium.


Assuntos
AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Músculo Liso/metabolismo , Miométrio/metabolismo , Parto/genética , Fatores de Transcrição/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Humanos , Trabalho de Parto/genética , Trabalho de Parto/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Parto/metabolismo , Gravidez , Fatores de Transcrição/metabolismo
13.
Mol Hum Reprod ; 27(5)2021 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-33823545

RESUMO

The onset of labour is a culmination of a series of highly coordinated and preparatory physiological events that take place throughout the gestational period. In order to produce the associated contractions needed for foetal delivery, smooth muscle cells in the muscular layer of the uterus (i.e. myometrium) undergo a transition from quiescent to contractile phenotypes. Here, we present the current understanding of the roles transcription factors play in critical labour-associated gene expression changes as part of the molecular mechanistic basis for this transition. Consideration is given to both transcription factors that have been well-studied in a myometrial context, i.e. activator protein 1, progesterone receptors, oestrogen receptors, and nuclear factor kappa B, as well as additional transcription factors whose gestational event-driving contributions have been demonstrated more recently. These transcription factors may form pregnancy- and labour-associated transcriptional regulatory networks in the myometrium to modulate the timing of labour onset. A more thorough understanding of the transcription factor-mediated, labour-promoting regulatory pathways holds promise for the development of new therapeutic treatments that can be used for the prevention of preterm labour in at-risk women.


Assuntos
Miométrio/fisiologia , Parto/genética , Fatores de Transcrição/fisiologia , Animais , Epigênese Genética , Feminino , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Trabalho de Parto/genética , Gravidez , Transcrição Gênica
14.
Reprod Sci ; 28(3): 659-664, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33469878

RESUMO

Labor and vaginal delivery cause acute ischemic/hypoxic insult to the placenta. Previous studies demonstrate that placentas from high altitude non-natives showed blunted responses to ischemic/hypoxic insult caused by labor and vaginal birth, and there were some differences in the ATP/ADP production ratio. We hypothesized that adapted highlanders would not have a stress response to the acute hypoxia/ischemia of labor. Tibetan laboring (n = 10) and non-laboring (n = 5) and European descendants laboring (n = 10) and non-laboring (n = 5) high-altitude placentas were analyzed using genome-wide expression array analysis. There was no evidence for ischemic/hypoxic stress in high-altitude Tibetan laboring as compared with non-laboring placentas, while there were differences in gene expression between laboring and non-laboring placentas from high-altitude European descendants. Our results provide evidence for adaptation to acute hypoxic ischemic insult caused by labor and vaginal birth in placentas in a high-altitude native Tibetan population.


Assuntos
Aclimatação , Doença da Altitude/prevenção & controle , Altitude , Isquemia/prevenção & controle , Trabalho de Parto , Parto , Placenta/irrigação sanguínea , Circulação Placentária , Doença da Altitude/etiologia , Doença da Altitude/genética , Doença da Altitude/fisiopatologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Isquemia/etiologia , Isquemia/genética , Isquemia/fisiopatologia , Trabalho de Parto/genética , Análise de Sequência com Séries de Oligonucleotídeos , Parto/genética , Gravidez , Tibet , Transcriptoma
15.
Reprod Sci ; 28(1): 252-262, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32780361

RESUMO

In most mammals, labor is heralded by the withdrawal of progesterone. In humans, circulating progesterone levels increase as gestation advances while placental expression of progesterone receptor A (PR-A) declines. As a result of PR-A downregulation, the non-canonical NF-κB pathway is activated, an event implicated in triggering labor. Here, we sought to identify fetal-derived mediator(s) that represses placental PR-A in human placenta leading to activation of pro-labor signaling. Lipidomic profiling demonstrated enrichment of platelet-activating factor (PAF) in exosomes originating from the human fetus. Exposure of primary cytotrophoblasts to fetal exosomes from term pregnancies reduced PR-A expression by > 50%, and PAF also reduced PR-A message levels in a dose-dependent manner. Notably, fetal exosomes from preterm pregnancies had lower PAF levels and no effect on PR-A expression. Synthetic PAF-induced DNA methylation increases by 20% at the PR-A promoter, leading to recruitment of corepressors and downregulation of PR-A in cytotrophoblast. Furthermore, suppression of PR-A by PAF-stimulated expression of the pro-labor genes, corticotropin-releasing hormone (CRH) and cyclooxygenase-2 (COX-2), which was reversed by disruption of the DNA methyltransferases 3B and 3L. Taken together, PAF represents a novel fetal-derived candidate for initiation of labor by stimulating methylation and repression of PR-A and activating pro-labor signaling in trophoblast.


Assuntos
Exossomos/metabolismo , Feto/metabolismo , Trabalho de Parto/metabolismo , Placenta/metabolismo , Fator de Ativação de Plaquetas/metabolismo , Progesterona/metabolismo , Receptores de Progesterona/metabolismo , Células Cultivadas , Metilação de DNA , Epigênese Genética , Feminino , Idade Gestacional , Humanos , Trabalho de Parto/genética , Lipidômica , Gravidez , Nascimento Prematuro/genética , Nascimento Prematuro/metabolismo , Nascimento Prematuro/fisiopatologia , Receptores de Progesterona/genética , Transdução de Sinais
16.
PLoS Biol ; 18(7): e3000710, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32667910

RESUMO

During gestation, uterine smooth muscle cells transition from a state of quiescence to one of contractility, but the molecular mechanisms underlying this transition at a genomic level are not well-known. To better understand these events, we evaluated the epigenetic landscape of the mouse myometrium during the pregnant, laboring, and postpartum stages. We generated gestational time point-specific enrichment profiles for histone H3 acetylation on lysine residue 27 (H3K27ac), histone H3 trimethylation of lysine residue 4 (H3K4me3), and RNA polymerase II (RNAPII) occupancy by chromatin immunoprecipitation with massively parallel sequencing (ChIP-seq), as well as gene expression profiles by total RNA-sequencing (RNA-seq). Our findings reveal that 533 genes, including known contractility-driving genes (Gap junction alpha 1 [Gja1], FBJ osteosarcoma oncogene [Fos], Fos-like antigen 2 [Fosl2], Oxytocin receptor [Oxtr], and Prostaglandin G/H synthase 2 (Ptgs2), for example), are up-regulated at day 19 during active labor because of an increase in transcription at gene bodies. Labor-associated promoters and putative intergenic enhancers, however, are epigenetically activated as early as day 15, by which point the majority of genome-wide H3K27ac or H3K4me3 peaks present in term laboring tissue is already established. Despite this early exhibited histone signature, increased noncoding enhancer RNA (eRNA) production at putative intergenic enhancers and recruitment of RNAPII to the gene bodies of labor-associated loci were detected only during labor. Our findings indicate that epigenetic activation of the myometrial genome precedes active labor by at least 4 days in the mouse model, suggesting that the myometrium is poised for rapid activation of contraction-associated genes in order to exit the state of quiescence.


Assuntos
Epigênese Genética , Loci Gênicos , Trabalho de Parto/genética , Miométrio/fisiologia , Contração Uterina/genética , Animais , Sequência de Bases , Feminino , Código das Histonas/genética , Camundongos Endogâmicos C57BL , Modelos Genéticos , Gravidez , Regiões Promotoras Genéticas , RNA/metabolismo , RNA Polimerase II/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica , Transcriptoma/genética , Regulação para Cima/genética
17.
Reprod Fertil Dev ; 31(6): 1035-1048, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30944064

RESUMO

Progesterone plays a crucial role in maintaining pregnancy by promoting myometrial quiescence. The withdrawal of progesterone action signals the end of pregnancy and, in most mammalian species, this is achieved by a rapid fall in progesterone concentrations. However, in humans circulating progesterone concentrations remain high up to and during labour. Efforts to understand this phenomenon led to the 'functional progesterone withdrawal' hypothesis, whereby the pro-gestation actions of progesterone are withdrawn, despite circulating concentrations remaining elevated. The exact mechanism of functional progesterone withdrawal is still unclear and in recent years has been the focus of intense research. Emerging evidence now indicates that epigenetic regulation of progesterone receptor isoform expression may be the crucial mechanism by which functional progesterone withdrawal is achieved, effectively precipitating human labour despite high concentrations of circulating progesterone. This review examines current evidence that epigenetic mechanisms play a role in determining whether the pro-gestation or pro-contractile isoform of the progesterone receptor is expressed in the pregnant human uterus. We explore the mechanism by which these epigenetic modifications are achieved and, importantly, how these underlying epigenetic mechanisms are influenced by known regulators of uterine physiology, such as prostaglandins and oestrogens, in order to phenotypically transform the pregnant uterus and initiate labour.


Assuntos
Histonas/metabolismo , Trabalho de Parto/metabolismo , Parto/metabolismo , Receptores de Progesterona/metabolismo , Útero/metabolismo , Epigênese Genética , Feminino , Histonas/genética , Humanos , Trabalho de Parto/genética , Parto/genética , Gravidez , Progesterona/metabolismo , Receptores de Progesterona/genética
18.
Biol Reprod ; 100(6): 1617-1629, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30915469

RESUMO

Untimely activation of the inflammatory response by sterile or infective insults in uterine tissues can result in preterm birth. Pro-inflammatory cytokines and pathogenic activation of toll-like receptors (TLRs) initiate a biochemical cascade of events leading to myometrial activation and contractility, cervical dilatation, and rupture of the chorioamniotic membranes. GIT2 is a signaling protein known to play a role in innate and adaptive immunity; however, its role in the inflammatory pathways of human labor is not known. In this article, we report that GIT2 expression is lower in human myometrium and fetal membranes with term labor, and in preterm amnion with histological chorioamnionitis. GIT2 knockdown by siRNA in primary myometrial and amnion cells exhibited reduced expression of pro-inflammatory cytokines and chemokines in response to inflammatory challenge by cytokines or TLR ligands. In addition, the pro-inflammatory cytokines IL1B and TNF could not induce the expression of extracellular matrix degrading enzymes in GIT2-deficient amnion cells. Myometrial activation in response to pro-inflammatory cytokines was also significantly suppressed in GIT2-deficient cells as evidenced by decreased prostaglandin release and expression of contraction-associated proteins. Further to this, collagen gel assays demonstrated that TNF had a reduced ability to induce myometrial contractility in situ in GIT2-deficient myometrial cells compared to control-transfected cells. In summary, the loss of GIT2 diminishes the effects inflammatory mediators have in promoting myometrial contraction and fetal membrane rupture in vitro, suggesting that GIT2 could be a possible target for preterm birth therapies.


Assuntos
Âmnio/metabolismo , Corioamnionite/genética , Citocinas/genética , Proteínas Ativadoras de GTPase/genética , Trabalho de Parto/genética , Miométrio/metabolismo , Âmnio/efeitos dos fármacos , Âmnio/patologia , Células Cultivadas , Quimiocinas/genética , Quimiocinas/metabolismo , Corioamnionite/metabolismo , Corioamnionite/patologia , Citocinas/metabolismo , Feminino , Proteínas Ativadoras de GTPase/antagonistas & inibidores , Proteínas Ativadoras de GTPase/deficiência , Técnicas de Silenciamento de Genes , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/prevenção & controle , Trabalho de Parto/metabolismo , Miométrio/efeitos dos fármacos , Miométrio/patologia , Trabalho de Parto Prematuro/etiologia , Trabalho de Parto Prematuro/genética , Trabalho de Parto Prematuro/metabolismo , Trabalho de Parto Prematuro/patologia , Gravidez , Cultura Primária de Células , RNA Interferente Pequeno/farmacologia
19.
Mol Cell Endocrinol ; 479: 1-11, 2019 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-30118888

RESUMO

Progesterone (P4) acting through the P4 receptor (PR) isoforms, PR-A and PR-B, promotes uterine quiescence for most of pregnancy, in part, by inhibiting the response of myometrial cells to pro-labor inflammatory stimuli. This anti-inflammatory effect is inhibited by phosphorylation of PR-A at serine-344 and -345 (pSer344/345-PRA). Activation of the cyclic adenosine monophosphate (cAMP) signaling pathway also promotes uterine quiescence and myometrial relaxation. This study examined the cross-talk between P4/PR and cAMP signaling to exert anti-inflammatory actions and control pSer344/345-PRA generation in myometrial cells. In the hTERT-HMA/B immortalized human myometrial cell line P4 inhibited responsiveness to interleukin (IL)-1ß and forskolin (increases cAMP) and 8-Br-cAMP increased this effect in a concentration-dependent and synergistic manner that was mediated by activation of protein kinase A (PKA). Forskolin also inhibited the generation of pSer344/345-PRA and expression of key contraction-associated genes. Generation of pSer344/345-PRA was catalyzed by stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK). Forskolin inhibited pSer344/345-PRA generation, in part, by increasing the expression of dual specificity protein phosphatase 1 (DUSP1), a phosphatase that inactivates mitogen-activated protein kinases (MAPKs) including SAPK/JNK. P4/PR and forskolin increased DUSP1 expression. The data suggest that P4/PR promotes uterine quiescence via cross-talk and synergy with cAMP/PKA signaling in myometrial cells that involves DUSP1-mediated inhibition of SAPK/JNK activation.


Assuntos
AMP Cíclico/farmacologia , Inflamação/patologia , Trabalho de Parto/efeitos dos fármacos , Miométrio/patologia , Progesterona/farmacologia , Anti-Inflamatórios/farmacologia , Células Cultivadas , Colforsina/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Trabalho de Parto/genética , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Miométrio/efeitos dos fármacos , Miométrio/metabolismo , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , Gravidez , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Transcrição Gênica/efeitos dos fármacos
20.
Genes Immun ; 20(1): 56-68, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29362510

RESUMO

Prior to and during the process of human labor, maternal circulating leukocytes infiltrate the maternal-fetal interface (choriodecidua) and become activated resembling choriodecidual leukocytes. Since, there is no evidence comparing maternal circulating and choriodecidual leukocytes, herein, we characterized their transcriptome and explored the biological processes enriched in choriodecidual leukocytes. From women undergoing spontaneous term labor we isolated circulating and choriodecidual leukocytes, performed microarray analysis (n = 5) and qRT-PCR validation (n = 9) and interaction network analysis with up-regulated genes. We found 270 genes up-regulated and only 17 genes down-regulated in choriodecidual leukocytes compared to maternal circulating leukocytes. The most up-regulated genes were CCL18, GPNMB, SEPP1, FN1, RNASE1, SPP1, C1QC, and PLTP. The biological processes enriched in choriodecidual leukocytes were cell migration and regulation of immune response, chemotaxis, and humoral immune responses. Our results show striking differences between the transcriptome of choriodecidual and maternal circulating leukocytes. Choriodecidual leukocytes are enriched in immune mediators implicated in the spontaneous process of labor at term.


Assuntos
Decídua/metabolismo , Trabalho de Parto/genética , Leucócitos/metabolismo , Transcriptoma , Adulto , Decídua/citologia , Feminino , Humanos , Trabalho de Parto/sangue , Trabalho de Parto/metabolismo , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...